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A simple criterion for the sign of
the pseudomomentum of modes in

shallow water systems
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(Received 30 March 1998 and in revised form 3 December 1998)

A simple criterion is derived for determining the sign of the pseudomomentum
of neutral modes in shallow water systems. The sign of the pseudomomentum is
determined by the gradient of the dispersion curve on a wavenumber vs. phase-speed
plane: a mode has pseudomomentum with the opposite sign to that of the gradient
of the dispersion curve. In most cases, the sign of the pseudomomentum is also
determined only from the value of its phase speed: the pseudomomentum of a mode
is positive if its phase speed is faster than the velocity of the basic flow at any point
and vice versa, but with a few exceptions.

1. Introduction
In fluid mechanics, including dynamic meteorology and physical oceanography,

instability of parallel flows with various configurations has been extensively studied.
A linear stability problem is often reduced to an eigenvalue problem. The procedure
to solve an eigenvalue problem is established, and there is not much mathematical
difficulty. However, physical interpretation is not easy. Since a subtle difference in
the basic situation may cause a great difference in the stability, we need means to
understand unstable modes in physical terms.

The concept of resonance between neutral waves is one of the ways to understand
physically such complicated unstable modes (Cairns 1979; Hayashi & Young 1987).
In particular, in the case of an instability caused by interaction between the layers in a
two-layer situation, the unstable mode is clearly identified as follows: first, we obtain
the eigenvalues for the reduced one-layer problem and then superpose the dispersion
curves of the upper- and the lower-layer waves. Unstable modes in the two-layer
problem are found where dispersion curves of the upper- and the lower-layer waves
intersect, and they can be considered to be caused by resonance between the waves
(Sakai 1989; Iga 1993, 1997).

Although an unstable mode may exist where a dispersion curve in the upper layer
and one in the lower layer intersect, not all intersections cause unstable modes in the
whole two-layer problem: an unstable mode appears in some cases and two modes
interchange without causing instability in others. This difference is determined by the
signs of the pseudomomenta of the two intersecting modes: an unstable mode appears
if they are opposite, while no unstable mode appears if they are the same. Therefore
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the sign of the pseudomomentum of a neutral wave is important information when
investigating instability.

In cases where the basic flow in each layer is uniform, such as in Sakai (1989) and
Iga (1993), we can presume the instability of the system without difficulty only from
the configuration of the basic state, since it is easy to show that the pseudomomentum
of a neutral wave has the same sign as that of intrinsic phase speed for uniform basic
flow. However, when the basic flow in each layer is not uniform, such a simple
criterion is not known. Thus, we want to derive simple criteria for determining the
sign of the pseudomomentum which is valid also in general cases with non-uniform
basic flow. Of course, it is hard to appreciate that the pseudomomentum of a mode
in a basic flow with a little shear differs greatly from that in a uniform flow. When
we solve a problem of frontal instability with a non-uniform basic flow, the sign of
the pseudomomentum of a mode with a phase speed outside the range of the basic
flow seems to be determined by whether the phase speed is faster or slower than the
velocity of the basic flow, in the same way as in the case of uniform basic flow (Iga
1997). We want to investigate whether this is generally the case.

This paper is organized as follows. We will give the basic equations of the system
considered and review the sign of the pseudomomentum in cases with a uniform basic
flow in § 2. The main part of the paper is § 3: we will prove some theorems which give
the sign of the pseudomomentum in general cases with non-uniform flow. A simple
application of these theorems to stability of fronts will be shown in § 4.

2. Basic equations and pseudomomentum
We will consider a shallow water system over a rotating plane which is uniform in

the x-direction. The basic flow is oriented in the x-direction and expressed as U(y).
For wave-type solutions with wavenumber k and phase speed c in the x-direction
(proportional to eik(x−ct)), the basic linear equations are

−ik(c−U)u =

(
f − dU

dy

)
v − ikgh, (2.1)

−ik(c−U)v = −fu− g dh

dy
, (2.2)

−ik(c−U)h = −ikHu− d

dy
(Hv). (2.3)

From (2.1)–(2.3), the potential vorticity equation

−ik(c−U)q = −dQ

dy
v (2.4)

is derived, where

q ≡ ζ − Qh
H

, ζ ≡ ikv − du

dy
, Q ≡ f − dU/dy

H

are the perturbation potential vorticity, the perturbation vorticity and the potential
vorticity of the basic state, respectively.
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In shallow water systems, there exists a conserved quality called the pseudomomen-
tum†

M ≡ 1

4

∫ (
uh∗ + hu∗ − H2|q|2

Q′

)
dy, (2.5)

which is proportional to the square of the amplitude (see e.g. Hayashi & Young 1987;
Sakai 1989). When the basic flow is uniform, the relation

(c−U)

∫ (
uh∗ + hu∗ − H2|q|2

Q′

)
dy =

∫
(H |u|2 +H |v|2 + g|h|2)dy (2.6)

holds (Iga 1999), and the sign of the pseudomomentum M is the same as that of
(c − U), because the right-hand side of (2.6) is positive. Namely, the sign of the
pseudomomentum is the same as that of the intrinsic phase speed.

3. Theorems on pseudomomentum
Even if the basic flow is not uniform, the following theorems, which give the sign

of the pseudomomentum M, generally hold.

Lemma 1. The relation (dc/dk)M = −(1/2k)
∫
H |v|2dy holds for a neutral mode.

Proof. (2.1)(1) × h(2)∗ leads to

−ik(1)(c(1) −U)u(1)h(2)∗ = QHv(1)h(2)∗ − ik(1)gh(1)h(2)∗, (3.1)

and (2.3)(1) × u(2)∗ to

−ik(1)(c(1) −U)h(1)u(2)∗ = −ik(1)Hu(1)u(2)∗ − u(2)∗ d

dy
(Hv(1)). (3.2)

Since (3.1)+(3.2) becomes

−ik(1)(c(1) −U)(u(1)h(2)∗ + h(1)u(2)∗)

=−ik(1)gh(1)h(2)∗− ik(1)Hu(1)u(2)∗ − ik(2)Hv(1)v(2)∗−H2v(1)q(2)∗− d

dy
(Hv(1)u(2)∗),

modification using (2.4) and integration over the region leads to∫
(c(1) −U)

(
u(1)h(2)∗ + h(1)u(2)∗ − H2q(1)q(2)∗

Q′

)
dy

=

∫ (
Hu(1)u(2)∗ + gh(1)h(2)∗ +

k(2)

k(1)
Hv(1)v(2)∗

)
dy. (3.3)

Replacing (1) and (2) and taking the complex conjugate of (3.3), we obtain

† When Q′ vanishes, q is also zero for a non-singular mode, as is seen from (2.4). Thus, (2.5) does
not diverge even if there are points which satisfy Q′ = 0. This is also evident from the expression
used in Hayashi & Young (1987) and Sakai (1989) M ≡ (1/4)

∫
(uh∗+ hu∗ −Q′H2|η|2)dy, where η is

displacement in the y-direction and thus η = v/[−ik(c − U)]. Since Q′ in a denominator is always
accompanied by q in the numerator, the following discussions hold even if Q′ vanishes, as far as
non-singular modes are concerned.
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(
u(1)h(2)∗ + h(1)u(2)∗ − H2q(1)q(2)∗

Q′

)
dy

=

∫ (
Hu(1)u(2)∗ + gh(1)h(2)∗ +

k(1)

k(2)
Hv(1)v(2)∗

)
dy, (3.4)

and (3.3)–(3.4) leads to

(c(1) − c(2)∗)
∫ (

u(1)h(2)∗ + h(1)u(2)∗ − H2q(1)q(2)∗

Q′

)
dy

=

(
k(2)

k(1)
− k(1)

k(2)

)∫
Hv(1)v(2)∗dy. (3.5)

Since c is real and thus c(2)∗ = c(2) for a neutral wave, dividing both sides of (3.5) by
k(1) − k(2) and letting k(2) → k(1), we get

dc

dk

∫ (
uh∗ + hu∗ − H2|q|2

Q′

)
dy = −2

k

∫
H |v|2dy, (3.6)

which shows the required relation.
In the special case of Q ≡ 0, it is already known that this relation holds (Hayashi

& Young 1987).

Lemma 2. If a mode satisfies v ≡ 0 for a certain k, then dc/dk = 0 for all k.

Proof. Putting v ≡ 0 in the basic equations (2.1)–(2.3), we get

(c−U)u = gh, (3.7)

0 = −fu− g dh

dy
, (3.8)

(c−U)h = Hu, (3.9)

which do not include k. Therefore, if there exist an eigenvalue and a corresponding
eigenfunction which satisfy (3.7)–(3.9) for a certain value of k, they are also an
eigenvalue and a corresponding eigenfunction for any value of k. Thus, the eigenvalue
c does not change even if k changes; this means dc/dk = 0 for all k.

Theorem 1. If dc/dk ? 0, then M 7 0.

Proof. From Lemma 1, if dc/dk > 0, then M 6 0 holds, since the right-hand side
of the equation in Lemma 1 satisfies −(1/k)

∫
H |v|2dy 6 0. The equality holds only

when −(1/k)
∫
H |v|2dy = 0 (i.e. v ≡ 0), but in this case, dc/dk = 0 from Lemma

2, which leads to a contradiction to the assumption. Hence, there is no choice but
M < 0. In the same way, if dc/dk < 0, then M > 0 holds.

Lemma 3. If dc/dk = 0 and (c − Umax) > 0, then M > 0, and if dc/dk = 0 and
(c−Umin) < 0, then M < 0.

Proof. From Lemma 1, dc/dk = 0 leads to −(1/k)
∫
H |v|2dy = 0, which means

v ≡ 0. From (2.4), v ≡ 0 leads to q ≡ 0. Moreover, using the relation (3.7), we can
express M as

M =
1

2

∫
(c−U)|u|2

g
dy,
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in this case. If (c−Umax) > 0, then the integrand is always positive and thus M > 0.
In the same way, if (c−Umin) < 0, then M < 0.

Lemma 4. For a mode with a phase speed outside the range of the basic flow U,
dc/dk does not change its sign, even if k changes.

Proof. If we assume that the sign of the gradient of dispersion curve changes
from dc/dk > 0 to dc/dk < 0, dc/dk must vanish at a certain k, but this means that
v ≡ 0 from Lemma 1, and that c is constant for this mode from Lemma 2, which is
contradictory to the assumption.

Lemma 5. If (c−Umax) > |f|max/2k, then dc/dk 6 0, and if (c−Umin) < −|f|max/2k,
then dc/dk > 0.

Proof. Substitution of (2.1) into (2.2)× [−ik(c−U)] eliminates the variable u, and
we get

−k2(c−U)2v = −fHQv + ikfgh+ ik(c−U)g
dh

dy
. (3.10)

In the same way, substitution of (2.1) into (2.3)× [−ik(c − U)] eliminates u, and we
get

−k2(c−U)2h = −ikH2Qv − k2gHh+ ik(c−U)
d

dy
(Hv), (3.11)

while (3.10)(1) × v(2)∗ leads to

− k(1)2

(c(1) −U)2v(1)v(2)∗

= −fHQv(1)v(2)∗ + ik(1)fgh(1)v(2)∗ + ik(1)(c(1) −U)gv(2)∗dh(1)

dy
, (3.12)

and (3.11)(2)∗ × h(1) to

−k(2)2

(c(2)∗ −U)2h(1)h(2)∗

= ik(2)H2Qh(1)v(2)∗ − k(2)2

gHh(1)h(2)∗ − ik(2)(c(2)∗ −U)h(1) d

dy
(Hv(2)∗). (3.13)

(3.12)×H/k(1)k(2)(c(1) −U)(c(2)∗ −U)− (3.13)× g/k(2)2

(c(2)∗ −U)2 becomes

−k
(1)

k(2)

(c(1) −U)

(c(2)∗ −U)
Hv(1)v(2)∗ + gh(1)h(2)∗

= − fH2Qv(1)v(2)∗

k(1)k(2)(c(1) −U)(c(2)∗ −U)
+

ifgHh(1)v(2)∗

k(2)(c(1) −U)(c(2)∗ −U)
+

igHv(2)∗

k(2)(c(2)∗ −U)

dh(1)

dy

− igH2Qh(1)v(2)∗

k(2)(c(2)∗ −U)2
+
g2Hh(1)h(2)∗

(c(2)∗ −U)2
+

igh(1)

k(2)(c(2)∗ −U)

d

dy
(Hv(2)∗)

= − fH2Qv(1)v(2)∗

k(1)k(2)(c(1) −U)(c(2)∗ −U)
+

ifgHh(1)v(2)∗

k(2)(c(1) −U)(c(2)∗ −U)

− igfHh(1)v(2)∗

k(2)(c(2)∗ −U)2
+
g2Hh(1)h(2)∗

(c(2)∗ −U)2
+

d

dy

(
igh(1)

k(2)(c(2)∗ −U)
Hv(2)∗

)
. (3.14)
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Integrating (3.14), we obtain∫ (
−k

(1)

k(2)

(c(1) −U)

(c(2)∗ −U)
Hv(1)v(2)∗ + gh(1)h(2)∗

)
dy

=

∫ (
− fH2Qv(1)v(2)∗

k(1)k(2)(c(1) −U)(c(2)∗ −U)
+

ifgHh(1)v(2)∗

k(2)(c(1) −U)(c(2)∗ −U)

− igfHh(1)v(2)∗

k(2)(c(2)∗ −U)2
+
g2Hh(1)h(2)∗

(c(2)∗ −U)2

)
dy. (3.15)

Replacing (1) and (2), taking the complex conjugate of (3.15) and subtracting it from
the original (3.15), we obtain∫

−
(
k(1)

k(2)

(c(1) −U)

(c(2)∗ −U)
− k(2)

k(1)

(c(2)∗ −U)

(c(1) −U)

)
Hv(1)v(2)∗dy

=

∫ [(
1

(c(1) −U)
− 1

(c(2)∗ −U)

)
ifgHh(1)v(2)∗

k(2)(c(2)∗ −U)

+

(
1

(c(2)∗ −U)
− 1

(c(1) −U)

)
ifgHh(2)∗v(1)

k(1)(c(1) −U)

+

(
1

(c(2)∗ −U)2
− 1

(c(1) −U)2

)
g2Hh(1)h(2)∗

]
dy.

Since c is real and thus c(2)∗ = c(2) for a neutral wave, dividing both sides of (3.5) by
k(1) − k(2) and letting k(2) → k(1), we get

−
∫
H |v|2dy =

dc

dk

∫ [
kH |v|2
c−U +

kg2H |h|2
(c−U)3

− ifgH

2(c−U)3
(hv∗ − h∗v)

]
dy. (3.16)

The integrand of the right-hand side of (3.16) is modified to

kg2H

(c−U)3

∣∣∣∣h+
ifv

2kg

∣∣∣∣2 +
H

k(c−U)3

[
k2(c−U)2 −

(
f

2

)2
]
|v|2,

which proves the lemma.
From this lemma, we know the sign of the pseudomomentum for the modes in the

region indicated in figure 1. In a non-rotating situation (f ≡ 0) as a special case, if
(c−Umax) > 0, then M > 0, and if (c−Umin) < 0 then M < 0 as is evident from this
lemma.

Theorem 2. If (c−Umax) > 0, then M > 0, and if (c−Umin) < 0, then M < 0, for a
neutral mode which is not connected to an unstable mode at a larger wavenumber k.

Proof. First, let us consider the case of (c−Umax) > 0. If we assume dc/dk > 0 for a
mode which is not connected to an unstable mode at larger k, even if the wavenumber
change dc/dk > 0 would still hold, owing to Lemma 4; dc/dk > 0 would lead to
(c−Umax) > |f|max/2k at a certain large enough wavenumber. However, dc/dk must
be negative in this region from Lemma 5, which is a contradiction. Therefore, for
a mode with (c − Umax) > 0 (and not connected to an unstable mode at larger k),
dc/dk 6 0 must hold. The inequality M > 0 holds from Theorem 1 if dc/dk < 0, and
from Lemma 3 if dc/dk = 0. In the same way, M < 0 holds, when (c−Umin) < 0.
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c = Umax + ;f;max /2k

c = Umin – ;f;max/2k

M < 0M < 0M < 0

M > 0M > 0M > 0

Umax

Umin

c

k

Figure 1. Region where the sign of pseudomomentum is determined from Lemma 5. The
darker-shaded horizontal region indicates where the velocity of the basic flow exists. It is known
from Lemma 5 that modes in the lighter-shaded region indicated as M > 0 have positive pseudo-
momentum and that modes in the region indicated as M < 0 have negative pseudomomentum.

4. Discussion
From Theorem 2, we can roughly conclude that pseudomomentum usually has the

same sign as that of the intrinsic phase speed, even if the basic flow is not uniform.
Moreover, even if the sign of the pseudomomentum cannot be determined from the
criterion of Theorem 2 (e.g. modes whose phase speed is inside the range of the basic
flow velocity), it is determined by the gradient of the dispersion curve from Theorem
1. Numerical results of Iga (1997) are consistent with these criteria. Although the sign
of the pseudomomentum of a wave is the same as that of the intrinsic phase speed
in most cases, exceptional cases may exist according to Theorem 2: a mode which is
connected to an unstable mode at a larger wavenumber may have a negative (positive)
pseudomomentum even if its intrinsic phase speed is positive (negative) (figure 2),
and such an exception has been found in reality (Yamasaki & Wada 1972).†

Since the discussion in this paper is based on the assumption of regularity of eigen-
functions, we can apply the theorems only to non-singular modes: for continuous
modes which have singularities inside their eigenfunctions, we can derive no informa-
tion about the sign of the pseudomomentum from these theorems. It is already known,
however, that the sign of the pseudomomentum of a continuous mode is decided by
the sign of the potential vorticity gradient at the critical level: the pseudomomentum
is negative (positive) when the potential vorticity gradient is positive (negative) (Iga

† Since Yamasaki & Wada (1972) did not treat a shallow water system but a two-dimensional
barotropic system, it is outside the applicability condition of this theorem. However, when we
make the depth of a shallow water system infinitely large, the phase speeds of some modes remain
finite, while those of others diverge to infinity. Since the former in the limiting case correspond
to modes in a two-dimensional barotropic system, the same theorems must be applicable also to
two-dimensional barotropic systems.
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k

Umax

Umin

c

Figure 2. A neutral mode which is connected to an unstable mode at a larger wavenumber. The
thin line indicates a dispersion curve of a neutral mode, and the thick line that of an unstable
mode. The neutral mode has a negative gradient of the dispersion curve and therefore has a positive
pseudomomentum, although its phase speed is smaller than Umin.

(a)

(b)

(c)

Figure 3. Configuration of frontal models: (a) the frontal surface intersects both the upper and
lower boundaries; (b) the frontal surface intersects only the upper boundary; (c) the frontal surface
intersects neither boundary. The situation of (c) is not usually called a ‘front’, and thus we do not
treat this situation here.

1999). Therefore, combining this knowledge and the theorems derived here, we can
easily judge the sign of the pseudomomentum, whether the mode is non-singular or
continuous.

Let us apply these theorems to the instability of fronts. While many frontal models
investigated previously are unstable (e.g. Killworth, Paldor & Stone 1984; Iga 1993,
1997), we can show that the two-layer frontal model is almost always unstable, by
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k

Umax

Umin

c

Umax

Umin

Lower layer

Upper layer

(a)

k

Umax

Umin

c

Umax

Umin

Lower layer

Upper layer

(b)

Figure 4. The range of velocity of the basic flow in both layers and dispersion curves of Poincaré
(gravity) modes. There must be instability in the dashed square. (a) The dispersion curves of
Poincaré modes in both layers intersect. Since the signs of their pseudomomenta are opposite, from
Theorem 2, this intersection causes instability. (b) The dispersion curve of a Poincaré mode enters
the velocity range of the basic flow in the lower layer. Instability occurs, since this mode has a
negative pseudomomentum from Theorem 2 and there is a point where Q′ < 0 in the lower layer.

applying these theorems. A ‘front’ is usually considered to be where the frontal surface
intersects either the ground (sea bottom) or the tropopause (sea surface). Hence, we do
not consider the situation of figure 3(c) here; we only consider the situations of figure
3(a, b), where the frontal surface intersects the upper boundary and/or the lower one.

Note that in a shallow water system, there exist Poincaré (gravity) modes for which
|c| → ∞ as k → 0 and c→ U(y0)± (gH(y0))

1/2 as k →∞ (where y0 is the point where
H(y) becomes minimum). Then, in the situation of figure 3(a), where Hmin = 0 for
both layers, the dispersion curves of Poincaré modes in both layers must cross. Since
the signs of the pseudomomenta of these Poincaré modes are opposite from Theorem
2, instability occurs around this crosspoint (figure 4a).
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On the other hand, in the situation of figure 3(b), there may be a possibility that
dispersion curves of Poincaré modes in both layers do not intersect, since the minimum
depth of the lower layer is finite. Nevertheless, in this case, instability usually occurs
where the dispersion curve of a Poincaré mode in the upper layer goes through the
velocity region of basic flow in the lower layer (figure 4b) for the following reason.
The absolute vorticity in the lower layer approaches f as y → ±∞, if the flow becomes
uniform. The potential vorticity is larger in the negative direction, since the depth of
the layer is smaller. Thus, there must be a point where the potential vorticity gradient
is negative. An unstable mode is necessarily formed, when a dispersion curve of a
mode with negative pseudomomentum enters a region of basic flow with negative
potential vorticity gradient (Iga 1999).

5. Conclusions
We have derived some simple criteria by which to judge the sign of the pseudo-

momentum of a neutral mode in shallow water systems, which is important in the
concept of resonance between waves. The sign of the pseudomomentum is determined
by the gradient of dispersion curves on the wavenumber vs. phase-speed plane: the
pseudomomentum is negative if the gradient of the dispersion curve is positive, while
the pseudomomentum is positive if the gradient is negative.

Moreover, the sign of the pseudomomentum is usually known only from the value
of its phase speed: the pseudomomentum is positive for a mode whose phase speed
is faster than the velocity of the basic flow at any point, and is negative for a mode
whose phase speed is slower than the velocity of the basic flow at any point. However,
we must note that there is an exception to this criterion: the pseudomomentum of a
mode which is connected to an unstable mode at a larger wavenumber may not have
the sign expected from this criterion.

From these theorems and knowledge of the condition for a non-singular mode and
the basic flow to interact, we can conclude that the system called a ‘front’ is almost
always unstable.
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